

'System on chip solutions for future high speed communication'

Gigabit Wave project objectives:

Hardware solutions for future

- ✓ short and medium range wireless communication links
- √high data rate

60-300 GHz, with bit rates up to and above 10 Gb/s

Project partners Chalmers,

and Teledyne Thousand oaks

Linköping University, Sivers IMA, Bitsim, Gotmic, Altera in MODEM-project NXP on 60 GHz RX/TX 45 nm CMOS TU-Berlin, HHI (Heinrich Hertz Institute) on 60 GHz NLOS-MIMO

Outline

- 1. Motivation
- 2. RFIC/MMIC processes for frequencies beyond 100 GHz
- 3. Some circuit results
- 4. Some system demonstrations
- 5. Summary

Evolution of Wireless Multimedia Services

- Wireless data rates increase tenfold every five years
- WLANs and WPANs
 demand for rates
 beyond 1 GBit/s in the
 near future

Courtesy Georg Boeck, boeck@tu-berlin.de, Berlin University of Technology

Develop future-proof solutions

- High speed
- High frequency
- Highly integrated

\$/bit

Mobile Backhaul:

Challenge to operators:

- Gbps capacity needed for LTE (2010)
- 2.5Gbps in a few years ahead
- 10Gbps as fiber extension

Challenges....

high datarate ->high bandwidth ->high frequency:

-60 GHz: unlicenced band 5 GHz, high attenuation, small distance, secure comm

-E-band: 71-76, 81-86 licenced band for PtP 10 GHz BW

-120 GHz: 20 GHz no standard today

-220 GHz: 40 GHz no standard today

- •Very few commercial circuits exist for the frontend like LNA, mixer, LO, modulator, demodulator etc
- •Today's most advanced semiconductor processes are needed for the realization of the hardware
- •No commercial back-end electronics exists
- •Spectrum efficiency
- •System simulation a challenge
- Packaging

System on chip solutions for future high speed communication

Gigabit Wave project approach

Evaluation and choice of IC Technologies

design of front-end IC:s

120 / 220 GHz

mm-wave transceivers

Back-end development and integration for System-on-Chip

Background in

- NXP 60 GHz
- E-band 71-76, 81-86 GHz VINNOVA

Goal

Demonstration of 2 fully integrated and packaged wireless 10 Gb/s Ethernet-compatible chipsets working in two bands: 120 GHz and 220 GHz.

Integration of mmW/THz-Electronics...

Single side band mixer

Generic demonstrator block diagram

The backend electronics is developed in a VINNOVA-project, called MODEM

Processes used at present in the program

	Teledyne	Teledyne	Teledyne	TSMC
Technology	InP DHBT	InP DHBT	InP HEMT	CMOS
Feature size	500 nm	250 nm	50 nm	45 nm
No. met.layers	5	5	2	9
Complexity	MSI - LSI	MSI - LSI	10 – 50	VLSI
f_T/f_{MAX}	330/360 GHz	400/700 GHz	600/600 GHz	300/300 GHz
V_{BR}	$VB_{CEO} = 4 V$	$VB_{CEO} = 4 V$	1 V	1 V
	120 GHz 220 GHz	120 GHz 220 GHz 340 GHz	120 GHz 220 GHz 340 GHz	60 GHz+

Teledyne: TSCHBT 0.5/0.25 μ m InP DHBT Dielectric layers in BCB

Denser integration possible, because the dielectric layers are 50 times smaller → 5-10 times denser integration possible as compared to standard MMIC technology! Each layer is 2 μm thick

First design round, including 29 circuits and test structures, was completed during autumn 2009. Evaluated during spring 2010. **Second design round**, including >100 circuits and test structures, was completed during spring 2011.

2-3 more tapeouts planned

Representative cross-section of TSCHBT IC technology. Drawing is not to scale. $f_t = 400$ GHz, and $f_{max} = 700$ GHz @ $J_E = 5$ mA/ μ m²

3D MMIC technology

Pioneering work was done by NTT since beginning of 1990....

Fig. 1. Structure of 3D MMIC and passive circuits

Gigabit Wave

Reticle taped-out autumn 2009

First design round, including 29 circuits and test structures, was completed during the autumn 2009.

Teledyne 500 nm InP DHBT, tapeout #1

Some MMICs in Teledyne tapeout #1

•Up converting Gilbert mixer

(CG = 11 dB, BW = 85-100 GHz)

Down converting Gilbert mixer

(CG = 2 dB, BW = 85-100 GHz)

Active balun

(CG = 0-8 dB, BW = 15-120 GHz)

Differential buffer amplifier

(A = 10 dB, BW = 90-130 GHz, OP1dB = 10 dBm)

Marcus Gavell, et al,' A fundamental upconverting Gilbert mixer for 100 GHz wireless applications, 32nd IEEE COMPOUND SEMICONDUCTOR IC (CSIC) SYMPOSIUM, 3-6 October 2010, Monterey, USA.

Teledyne tapeout #2 50 nm InP HEMT Tapeout May 2010 test round

- Test devices for modeling and designkit
- Single-ended resistive mixers
- •W- and G-band LNAs
- •120 GHz OOK-modulator
- •220 GHz OOK-modulator
- •Frequency Tripler 30 to 100 GHz
- •220 GHz Antenna-Integrated mixers
- •100-220 GHz power detector
- •100-220 GHz envelope detector (10 Gbps)

A designkit was made for this process including scalable nonlinear HEMT model

Majority of circuits works well, several publications ahead One possible patent on antenna integrated mixer

Wireless system demonstrations

- 1. 12.5 Gbps OOK short range link at 220 GHz
- 2. NLOS MIMO at 60 GHz 500 Mbps
- 3. 5 Gbps at E-band with D-QPSK

Gigabit Wave

System level experiments are made on our latest receiver module (IAF 100nm mHEMT) to demonstrate the feasibility of 12.5Gbps wireless data transmission at 220GHz.

220 GHz
Single-Chip
Heterodyne
TX-RX with
integrated
antenna

System Level Experiments

Morteza Abbasi, et al., Single-Chip 220 GHz Active Heterodyne Receiver and Transmitter MMICs with on-Chip Integrated Antenna, IEEE Trans. MTT 2011

Advanced mm-wave module for 100+ GHz MMICs

- Verified performance up to 110 GHz
- •High performance Waveguide to microstrip transitions
- Possibility to integrate multiple chips
- •First demonstion of 60 GHz MIMO NLOS in collaboration with Heinrich Hertz Institute/TUB using these modules

Gigabit Wave

World 1st Demo of 60GHz NLOS STC-MIMO System

We demonstrated world 1st Non-Line-Of-Sight MIMO System on ICC'09 with HHI

• 2x2 MIMO with Space-time-coding

• Transmitting continue when direct path is blocked

•Data rate: 250 Mbps

• Real time HDTV video transmission

• Transmission distance: 10m

Cooperating Partner:

Heinrich Hertz Institute (HHI):Signal Processing

MEL, Chalmers60GHz MMIC-chipset and RF module design

•TU Berlin
CMOS multifunction RFIC

International Conference on Communication 2009

Dresden Germany

1st chip set for **60 GHz radio** made at Chalmers University in pHEMT technology (WIN PP-15) Image reject receiver **RF** amplifier RFin Baseband out 56-64 GHz **Image reject** 2.5 GHz CF mixer **Experimental data** 8 dB RF-IF gain X8 frequency multiplier+buffer >25 dB image rejection 56-64 GHz RF bandwidth 5.7x5 mm >1.5 GHz IF bandwidth **Transmitter** RFout Baseband in LO 6.7-7.7 GHz 56-64 GHz 2.5 GHz CF Balanced mixer w. high LO-rejection See IEEE JSSC Nov 2005 5x3.5 mm LO 6.7-7.7 GHz

5Gbps demonstrator

5GB E-band radio demonstrator

- Joint-research with MEL, Chalmers
- Demonstrator Technology
 - Link capacity: 5Gbit/s full-duplex
 - Frequency: 71-76GHz & 81-86GHz (E-band)
 - Modulation: Differential-QPSK
 - All-outdoor unit with dual-channel STM-16/OC-48 optical interface
- > Future-proof microwave backhaul solution for LTE and beyond

Simon He, Jingjing Chen

Mapping of our activities onto SSF's evolution plot

Figur 2. Illustration av svenska forskningsfinansiärers prioriteringsområden.

Summary

Circuit Design and Fabrication up to 340 GHz

Packaging and Interfacing

60GHz receiver / transmitter

118GHz low-noise heterodyne receiver

180GHz integrated signal source

220GHz low-noise heterodyne receiver / transmitter with integrated antennas

System Level Measurements & Demonstrations

Thank You for listening!

Gigabit Wave

WIN 150nm mHEMT

E-band circuits

- •Low Noise Amplifiers NF=4.5 dB, Gain=23 dB,
- •IQ modulator (Accepted IMS 2010)

Side-band suppression >= 20 dB, IIP3=20dBm

•Image Reject Mixer (Presented CSICS 2009)

Image-Rejection Ratio >= 20 dB

- Multipliers (x8)
- •Gotmic AB (spin-off 2008) uses WIN for E-band circuits

