Next-Generation Optical Communication Systems

Peter Andrekson
Photonics Laboratory
Department of Microtechnology and Nanoscience (MC2)
Chalmers University of Technology

May 10, 2010

SSF project mid-term presentation

Outline

- Background, motivation and goal
- Partners and organization
- Results and achievements

Fibre Optic Communications Research Centre

Background, Motivation & Goal

- ➤ Optical bandwidth is becoming a scarce resource → Need to develop much more spectrally efficient transmission (i.e. non-binary formats) to meet the ever increasing capacity demands
- ➤ We can leverage techniques from wireless systems; adopted to much higher (hardware constrained) speed and to a nonlinear transmission channel (the fiber)
- > Cross-disciplinary effort involving two Chalmers groups with leading edge research
- ➤ We aim to generate essential knowledge & competence for next generations of optical communications systems, covering a wide range of application from < 1km datacom links (very cost sensitive) to Mm trunk multi Tb/s networks
- Co-optimization of optical & electrical hardware and signal processing algorithms. (Ex. optical vs. electronic dispersion compensation).

Partners and Project Organization

Partners

Optical Communications Group, Microtechnology and Nanoscience, Chalmers (Peter Andrekson)
Communication Systems Group, Signals and Systems, Chalmers (Erik Agrell)

External Swedish industry partners: Ericsson AB, Proximion AB, EXFO Sweden AB

Work packages:

The People

Researchers:

Peter Andrekson
Magnus Karlsson
Erik Agrell
[Guo-Wei Lu]
Henk Wymeersch
Pontus Johannisson
[Serdar Tan]
Debarati Sen
Bill Corcoran

PhD students:

Krzysztof Szczerba Martin Sjödin Ekawit Tipsuwannakul Lotfollah Beygi Johnny Karout

CHALMERS

Notable Highlights to-date

CHALMERS

Complex modulation formats need advanced measurement tools: Phase-sensitive all-optical sampling

Pulsed pump in optical-fiber-based four-wave mixing gate and cw LO provides high time resolution measurement capability of the complete optical field.

Examples of constellation diagrams captured with 3 ps resolution

CHALMERS

Non-coherent systems

Simpler, less powerful receivers compared with coherent counterpart

Transmission of 240 Gb/s dual-polarization D8PSK over 320 km in a 10 Gb/s DWDM system

- Demonstration of a record bit-rate (240 Gbit/s) differential format over a single wavelength
- Investigation of nonlinear effects in upgrade scenario

D8PSK constellation

- Three configurations investigated
- D8PSK is less robust against fiber nonlinearities compared to DQPSK

Wavelength (nm)

Performance comparison of 120 Gb/s DQPSK-ASK versus D8PSK

- First direct comparison of 8-ary differential formats
- First nonlinear study of DQPSK-ASK
- The compared bit-rate is relevant for the forthcoming 100 GbE

- <u>Either</u> can be better over different reaches
 - < 400 km: DQP-ASK
 - > 400 km: D8PSK

0.9 Tb/s, 160 GBaud PM-D8PSK-OTDM transmission over 110 km

First D8PSK OTDM study

- Highly relevant to anticipated 400 GbE
- Transmission over a conventional link

- Successful transmission (BER <10⁻³) over
 - 220 km (0.44 Tbit/s single polarization)
 - 110 km (0.88 Tbit/s dual polarization)
- Performance limited by cross- & self-phase modulation

Sensitivite modulation formats for IMDD applications

The signal space in IMDD links is a 3-dimensional cone if an electrical subcarrier is used:

- Φ_3 Cosine component of the subcarrier
- Φ_2 Sine component of the subcarrier
- Φ_1 Symbol bias

Modulation format optimization in the available signal space:

[Patent pending]

Experimental results for IMDD links

Coherent systems and receivers

Self-homodyne coherent transmission

In self-homodyne systems, a co-propagating pilot tone in the orthogonal polarization state is used as phase reference in the receiver instead of a local oscillator laser.

DSP in the receiver not required

Lasers with broad linewidth can be used

Not compatible with pol-multiplexing

"Zipper multiplexing scheme" can be used to obtain high spectral efficiency in self-homodyne coherent systems, with a very low complexity receiver. [Patent pending]

Measured results with 10 GBaud QPSK DWDM signals over 200 km link

Back-to-back BER vs. OSNR

Required OSNR vs. spectral efficiency

ID: intradyne; SH: self-homodyne

Further improvement expected with adequate pre-filtering od the signals

16-QAM transmitter using cascaded in-phase/quadrature modulators driven by binary electrical signals

Simple approach with existing hardware that can be scaled further

Polarization Demultiplexing using Independent Component Analysis

Phase Tracking for 16-QAM

Phase tracking requires:

- Sufficiently high SNR
- Low laser linewidth

Proposed Method

- Tolerates high laser linewidth but requires increased SNR
- Performance improves by using both polmux channels

*M.Seimetz, OFC2008, OTuM2(2008).

Clock recovery in coherent receivers

- The goal of clock recovery is to estimate optimal sampling times
- We have investigated the impact of SPM on the accuracy of estimation
- Cramér-Rao Bound (CRB): Lower bound on error variance of any unbiased estimator

- CRB, which shows optimal algorithm performance, derived for first time for optical links.
- There is a large gap in performance: Better algorithms can be developed!

Which modulation format is most sensitive in 2d and 4d?

- Simulations of all formats < 32 points in 4d constellation space.
- An 8-point constellation is overall best (1.76 dB better than BPSK) in 4d.
- It is known as polarization-switched QPSK, PS-QPSK.

The PS-QPSK format – experimental verification

- PS-QPSK format transmits 3 bits per symbol, and can be generated by QPSK and a polarization selection.
- It gains 1 dB over PM-QPSK @BER=0.001
- First experimental verification!

Multilevel coded modulation (MLCM)

By co-optimizing **modulation** and **coding**, one can obtain:

- higher power efficiency,
- a simple, flexible multistage receiver, and
- capacity-achieving systems.

Example: 16-QAM penalized by nonlinear impairments over 5-6000 km transmission

Results:

- A new design method for MLCM with Reed-Solomon codes
- An MLCM system for transmission with nonlinear phase noise

Dissemination

- 18 journal papers (1 invited)
- 24 conference presentations (8 invited)
- 1 book chapter
- 3 Licentiate theses (L. Beygi, M. Sjödin, E. Tipsuwannakul)
- 2 patent applications
- Inauguration of the FORCE Center of Excellence at Chalmers along with a workshop in May 2010

Future plans

WP1: Advanced modulation and coding

Coded modulation optimized for more realistic fiber transmission systems
Estimation methods based on training sequences for phase/polarization tracking & timing recovery

WP2: Hardware and subsystems

Novel modulation formats, e.g. pulse-position modulation combined with PS-QPSK Novel concepts for dispersion and nonlinearity mitigation, e.g. so-called factor graphs

WP3: Signal characterization tools

Quantify DSP-based carrier recovery performance (coherence, noise) by benchmarking with self-homodyne method

Parallelized real-time optical sampling for high bandwidth signal characterization

WP4: System evaluations

Evaluation of ultralow noise, phase-sensitive amplifiers in real transmission links Adaptive optical networks; Channel estimation & optical performance monitoring