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Background, Motivation & Goal

» Optical bandwidth is becoming a scarce resource =» Need to develop much more
spectrally efficient transmission (i.e. non-binary formats) to meet the ever increasing
capacity demands

» We can leverage techniques from wireless systems; adopted to much higher (hardware
constrained) speed and to a nonlinear transmission channel (the fiber)

» Cross-disciplinary effort involving two Chalmers groups with leading edge research

» We aim to generate essential knowledge & competence for next generations of optical
communications systems, covering a wide range of application from < 1km datacom links
(very cost sensitive) to Mm trunk multi Tb/s networks

» Co-optimization of optical & electrical hardware and signal processing algorithms.
(Ex. optical vs. electronic dispersion compensation).
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Partners and Project Organization

Partners

Optical Communications Group, Microtechnology and Nanoscience, Chalmers (Peter Andrekson)

Communication Systems Group, Signals and Systems, Chalmers (Erik Agrell)

External Swedish industry partners: Ericsson AB, Proximion AB, EXFO Sweden AB

Work packages:
WP1 WP2 WP3
Advanced modulation ' ' Hardware and sub- ' ' Signal
formats and coding systems characterization tools
WP4

System evaluations
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The People

Researchers:

Peter Andrekson
Magnus Karlsson
Erik Agrell
[Guo-Wei Lu]

Henk Wymeersch
Pontus Johannisson
[Serdar Tan]
Debarati Sen

Bill Corcoran

PhD students:
Krzysztof Szczerba
Martin Sjodin

Ekawit Tipsuwannakul ,
Lotfollah Beygi & ‘ A 'FIURCE
Johnny Karout |
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Notable Highlights to-date
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Complex modulation formats need advanced measurement tools:
Phase-sensitive all-optical sampling

sampling CW local
pulse source oscillator

Intradyne
phase FWM based

: > phase-diversity
encoded sampling gate Filter - mixing
signal ?Lsfgna! Aidler
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Pulsed pump in optical-fiber-based four-wave mixing gate and cw LO provides
high time resolution measurement capability of the complete optical field.

Examples of constellation diagrams captured with 3 ps resolution
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Non-coherent systems

Simpler, less powerful receivers compared with coherent counterpart
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Transmission of 240 Gb/s dual-polarization D8PSK over 320 km
ina 10 Gb/s DWDM system

« Demonstration of a record bit-rate (240 Gbit/s) D8PSK constellation
differential format over a single wavelength

* Investigation of nonlinear effects in upgrade scenario
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Performance comparison of 120 Gb/s DQPSK-ASK versus DSPSK

* First direct comparison of 8-ary Input Output
differential formats

* First nonlinear study of DQPSK-ASK

» The compared bit-rate is relevant for
the forthcoming 100 GbE
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0.9 Tb/s, 160 GBaud PM-D8PSK-OTDM transmission over 110 km

Back-to-back performance
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Sensitivite modulation formats for IMDD applications

&
, W The signal space in IMDD links is a 3-dimensional
o cone if an electrical subcarrier is used:
/ « ®; - Cosine component of the subcarrier
« @, — Sine component of the subcarrier
\. ®, — Symbol bias J
b2 b3
Modulation format | = 7 =1\ =
optimization in the s s
available signal M " N
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[Patent pending] 2
4-level 8-level 16-level
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Experimental results for IMDD links

x ook /OOPSK (on-off phase shift keying) — a
O QPSK

- new format with 2 dB improvement over
QPSK subcarrier modulation and 0.6 dB
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Coherent systems and receivers

X
- —> ADC —>
Signal in —> o
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Self-homodyne coherent transmission

In self-homodyne systems, a co-propagating pilot tone in the orthogonal polarization
state is used as phase reference in the receiver instead of a local oscillator laser.

DSP in the receiver not required y
. . . aser -pol PBC
Lasers with broad linewidth can be used ) 4,_, QQQ_P BS_T;E K
PC | I
Not compatible with pol-multiplexing y-pol

-

Y Pilot tone

“Zipper multiplexing scheme” can be used to obtain
high spectral efficiency in self-homodyne coherent

systems, with a very low complexity receiver.
[Patent pending]
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Measured results with 10 GBaud QPSK
DWDM signals over 200 km link

Back-to-back BER vs. OSNR
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Further improvement expected with
adequate pre-filtering od the signals
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16-QAM transmitter using cascaded in-phase/quadrature
modulators driven by binary electrical signals

Measured 40 Gbaud

Under-Driven Fully-Driven 16-QAM signal
0.8Vm ™1 mop 2V "ia mop -
Mzm-2> Mzm-1>
zm-g>—7, zm-0>—7,
0.8Vn 2Vn
eo ! wales
e e ol s
Offset ‘@‘ ‘@’
4-QAM 16-QAM ' H %%

Simple approach with existing hardware that can be scaled further
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Polarization Demultiplexing using Independent
Component Analysis

o Track polarization state, compensate PMD

Commonly used algorithm
» Constant Modulus
Algorithm (CMA)

Proposed method
*Independent Component
Analysis (ICA)

—
OI

—
ol
N

Proposed Method
» Converges always
» Shows faster convergence

- |CA

0 50 100 150 200
Number of processed symbols

Probability to not have converged
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Phase Tracking for 16-QAM

Phase Tracking: Synchronize signal and LO phases
10 ;

e ——————————

g g g ————————

Phase tracking requires:
« Sufficiently high SNR
* Low laser linewidth

- = = one polarization
- combined polarizations
=+ Viterbi & Viterbi (M=64)

~ Method from * with M=64

Proposed Method
 Tolerates high laser
linewidth but requires
< increased SNR

Estimator variance

» Performance improves
by using both polmux

4 channels
10

-
4 ]

10~ 10~ 10
2
oy = 2ol T “M.Seimetz, OFC2008, OTuM2(2008).
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Clock recovery in coherent receivers

» The goal of clock recovery is to estimate optimal sampling times

» We have investigated the impact of SPM on the accuracy of estimation

» Cramér-Rao Bound (CRB): Lower bound on error variance of any unbiased
estimator

10

» CRB, which shows optimal
algorithm performance,
derived for first time for
optical links.

107

estimation variance
>

— CRB non—linear * There is a large gap in
- - - CRB linear performance: Better

— estimator non-linear algorithms can be

= = = estimator linear developed!

input power [dBm]
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Which modulation format is most sensitive in 2d and 4d?

5 . —
4.5 | | g | | s SRR
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configurations

® Formats are usually
compared by plotting the

3 inherent trade off between
E - sensitivity and spectral

£  QPSK, DP-QPSK efficiency (SE).
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<. 3 1 1 1 N P e s sensitive) we can do with
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3 | | | | (dimensionality)?

M. Karlsson and E. Agrell, Opt Exp. 17, pp. 10814 (2009)

0.5
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Sensitivity penalty 1/y [dB]

* Simulations of all formats < 32 points in 4d constellation space.
* An 8-point constellation is overall best (1.76 dB better than BPSK) in 4d.
* |tis known as polarization-switched QPSK, PS-QPSK.
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The PS-QPSK format — experimental verification

M. Sjodin et al, Opt Exp. 19, pp. 7839 (2011)

* PS-QPSK format transmits
3 bits per symbol, and can
be generated by QPSK and
a polarization selection.

* It gains 1 dB over PM-
QPSK @BER=0.001

* First experimental
verification!

B, 6 7 8 9 10 11 12 13
| OSNR (dB)
opt. out.

1 QPSKTx (——» PoM |——»
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Multilevel coded modulation (MLCM)

By co-optimizing modulation and coding, one
can obtain:

» higher power efficiency,

« asimple, flexible multistage receiver, and

e capacity-achieving systems.

Results:

* A new design method for MLCM
with Reed-Solomon codes

 An MLCM system for
transmission with nonlinear

Fiber with nonlinear phase noise phase nOise
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impairments over 5-6000 km transmission Transmit power
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Dissemination

18 journal papers (1 invited)

24 conference presentations (8 invited)

1 book chapter

3 Licentiate theses (L. Beygi, M. Sjodin, E. Tipsuwannakul)

2 patent applications

Inauguration of the FORCE Center of Excellence at Chalmers

along with a workshop in May 2010

FIORCE
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Future plans

WP1: Advanced modulation and coding
Coded modulation optimized for more realistic fiber transmission systems
Estimation methods based on training sequences for phase/polarization tracking & timing recovery

WP2: Hardware and subsystems
Novel modulation formats, e.g. pulse-position modulation combined with PS-QPSK
Novel concepts for dispersion and nonlinearity mitigation, e.g. so-called factor graphs

WP3: Signal characterization tools

Quantify DSP-based carrier recovery performance (coherence, noise) by benchmarking with
self-homodyne method

Parallelized real-time optical sampling for high bandwidth signal characterization

WP4: System evaluations
Evaluation of ultralow noise, phase-sensitive amplifiers in real transmission links
Adaptive optical networks; Channel estimation & optical performance monitoring
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